
Verwalter Documentation
Release 0.13.4

Paul Colomiets

Aug 10, 2018

Contents

1 About 3
1.1 Concepts . 3
1.2 Glossary . 9

2 Running 11
2.1 Exit Codes . 11
2.2 Configuration Directory Layout . 12

3 Writing Scheduler 15
3.1 Scheduler API . 15
3.2 Rendering . 16

4 Writing Renderers 19
4.1 Render Commands . 19

5 Tutorial Deployment 21
5.1 Brief . 21
5.2 Container . 22
5.3 Preparing Machines . 22

6 Verwalter Changes by Version 25
6.1 Verwalter 0.13.4 . 25
6.2 Verwalter 0.13.3 . 25
6.3 Verwalter 0.13.2 . 25
6.4 Verwalter 0.13.1 . 25
6.5 Verwalter 0.13.0 . 26
6.6 Verwalter 0.12.1 . 26
6.7 Verwalter 0.12.0 . 26
6.8 Verwalter 0.11.3 . 26
6.9 Verwalter 0.11.2 . 26
6.10 Verwalter 0.11.1 . 26
6.11 Verwalter 0.11.0 . 26
6.12 Verwalter 0.10.4 . 27
6.13 Verwalter 0.10.3 . 27
6.14 Verwalter 0.10.2 . 27
6.15 Verwalter 0.10.1 . 27
6.16 Verwalter 0.10.0 . 27

i

6.17 Verwalter 0.9.14 . 27
6.18 Verwalter 0.9.13 . 28
6.19 Verwalter 0.9.12 . 28
6.20 Verwalter 0.9.11 . 28
6.21 Verwalter 0.9.10 . 28
6.22 Verwalter 0.9.9 . 28
6.23 Verwalter 0.9.8 . 28
6.24 Verwalter 0.9.7 . 28
6.25 Verwalter 0.9.6 . 29
6.26 Verwalter 0.9.5 . 29
6.27 Verwalter 0.9.4 . 29
6.28 Verwalter 0.9.3 . 29
6.29 Verwalter 0.9.2 . 29
6.30 Verwalter 0.9.1 . 29
6.31 Verwalter 0.9.0 . 29

7 Indices and tables 31

ii

Verwalter Documentation, Release 0.13.4

Contents:

Contents 1

Verwalter Documentation, Release 0.13.4

2 Contents

CHAPTER 1

About

Contents:

1.1 Concepts

Verwalter is a cluster orchestration tool

Briefly verwalter does the following:

• Starts configured set of services

• Monitors cluster load and changes number of workers on demand

• Does gradual software update of supervised services triggered by operator

• Provides limited form of service discovery

• All the features are scriptable by clean and simple Lua code fragments

It builds on top of lithos (which is isolation, containerization, and supervising service) and cantal (which is sub-real-
time monitoring and node discovery service).

Verwalter is a framework for long-running services. It has abstractions to configure running 10 instances of service X
or use 7% of capacity for service Y. The resources are consumed until configuration changed. Contrast this approach
with Mesos or Yarn which has “start task A until it completes” abstraction. (However, Verwalter can run and scale
Mesos or Yarn cluster).

1.1.1 Components

Let’s look through each component of the system first. This is very helpful to understand the big picture outlined
below.

Note the setup of the cluster is flat: you need all three components verwalter, lithos and cantal on all nodes.

3

http://lua.org
http://github.com/tailhook/lithos
http://cantal.readthedocs.org
http://mesos.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Verwalter Documentation, Release 0.13.4

Lithos

Lithos is essentially a process supervisor. Here is the basic workflow:

1. Read configuration at /etc/lithos/sandboxes

2. For each sandbox read configuration in /etc/lithos/processes

3. Prepare the sandbox a/k/a linux container

4. Start process and keep restarting if that fails

5. Add/remove process if configuration changed

Lithos provides all necessary isolation for running processes (except it does not handle network at the moment of
writing), but it’s super-simple comparing to docker and mesos (i.e. mesos-slave) and even systemd:

• Lithos reads configuration from files, no network calls needed (note the security impact)

• Lithos can restart itself in place, keeping track of processes, so it’s mostly crash-proof

• On SIGHUP signal (configuration change) it just restarts itself

The security model of lithos is the ground for the security of whole verwalter-based cluster. So let’s take a look:

• It’s expected that configs for sandboxes are predefined by administrators and are not dynamically changed
(either by verwalter or any other tool)

• Sandbox config constrains folders, users, and few other things that an application can’t escape

• The command-line to run in sandbox is defined in image for the application

All this means that verwalter can only change the following things:

• Image (i.e. version of image) to run command from

• The name of the command to run from limited set of options

• Number of processes to run

I.e. whatever evil would be in verwalter’s script it can’t run an arbitrary command line on any host. So can’t install a
rootkit, steal users’ passwords and do any other harm except taking down the cluster (which is an expected permission
for resource scheduler). This is in contrast to docker/swarm and mesos that allow to run anything.

Cantal

The cantal is a semi-real-time monitoring tool. It delivers statistics in unusually short intervals and provides node
discovery.

We use it:

• As a node discovery and availability monitoring

• For looking at current metrics of started application in nearly real-time

• As a liveness check for applications (mostly by looking at metrics)

• For collecting metrics from all nodes and aggregating

• For fetching limited amount of historical data (~1 hour)

4 Chapter 1. About

http://github.com/tailhook/lithos
http://docker.com
http://mesos.apache.org/
http://www.freedesktop.org/wiki/Software/systemd/
http://github.com/tailhook/lithos
http://docker.com
http://mesos.apache.org/
http://cantal.readthedocs.org

Verwalter Documentation, Release 0.13.4

Verwalter

The verwalter is final piece of the puzzle to build fully working and auto-rebalancing cluster.

In particular it does the following:

1. Establishes leader of the cluster (or a subcluster in case of split-brain)

2. Leader runs model of the cluster defined by sysadmin and augmented with lua scripts, to get a number of
processes run at each machine (and other important pieces of configuration).

3. Leader delivers configuration to every other node

4. At every node, the configuration is rendered to local configuration files (most importantly /etc/lithos/
processes, but other types of configuration are supported too), and respective processes are notified.

5. All nodes display web frontend to review configuration. Frontend also has actionable buttons for common
maintainance tasks like software upgrade or remove node from a cluster

Unlike popular combinations of etcd + confd, consul + consul-template, or mesos with whatever framework, verwalter
can do scheduling decisions in split-brain scenario even in minority partition. Verwalter is not a database so having
two leaders is not a problem when used wisely.

Note: Yes you can control how small cluster must be for cluster model to work, and you can configure different
reactions in majority and minority partition. I.e. doing any decisions on a single node isolated from 1000 other nodes
is useless. But switching off external memcache instance for the sake of running local one may be super-useful if you
have a micro-service running on just two nodes.

The Missing Parts

In the current implementation, the missing part of the puzzle is a means to deliver files to each box. In particular the
following files might need to be distributed between nodes:

1. Images of containers for lithos

2. Vervalter’s configs and configuration templates

We use ansible and good old rsync for these things for now

1.1.2 The Big Picture

Fig. 1: All three processes [C]antal, [L]ithos and
[V]erwalter on every machine

The cluster setup is simple. We have only one type of node
and that node runs three lightweight processes: lithos, can-
tal and verwalter.

As outlined above cantal does node discovery by UDP.
When the node first time becomes up, it needs to join the
cluster. Joining the cluster is done by issuing a request:

curl http://some.known.host:22682/add_host.json -d '{"addr": "1.2.3.4:22682"}'

Warning: This is not a stable API, so it may change at any time.

1.1. Concepts 5

https://coreos.com/etcd/
http://www.confd.io/
https://www.consul.io/
https://github.com/hashicorp/consul-template
http://mesos.apache.org/
http://ansible.com
https://en.wikipedia.org/wiki/Rsync
http://github.com/tailhook/lithos
http://cantal.readthedocs.org
http://cantal.readthedocs.org
http://cantal.readthedocs.org

Verwalter Documentation, Release 0.13.4

Fig. 2: Propagation of cluster join message

As the nodes are all equal you can issue a request to any
node, or you can add any existing node of a cluster to
the new node, it doesn’t matter. All the info will quickly
propagate to other nodes via gossip protocol.

As illustrated on the picture the discovery is random. But it tuned well to efficiently cover the whole network.

Fig. 3: Initial request of cluster info
When starting up, verwalter requests cluster information
from local cantal instance. The information consists of:

• list of peers in the cluster

• availability of the nodes (i.e. time of last successful
ping)

• some minor useful info like round trip time (RTT)
between nodes

Verwalter delegates all the work of joining cluster to cantal.

As described above, verwalter operates in one of the two modes: leader and follower. It starts as follower and waits
until it will be reached by a leader. The Leader in turn discovers followers through cantal. I.e. it assumes that every
cantal that joins the cluster has a verwalter instance.

Note: While cantal is joining cluster and verwalter does its own bootrapping and possible leader election, the lithos
continues to run. The above means if there was any configuration for lithos before a reboot of the system or before
you do any maintenance of the verwalter/consul, the processes are started and supervised. Any processes that crash
are restarted and so on.

In case you don’t want processes to start on boot, you may configure the system to clean lithos configs on reboot (for
example by putting them on tmpfs filesystem). Such configuration is occasionally useful, but we consider the default
behaviour to start all processes that were previously run more useful in most cases.

Leader’s Job

When verwalter follower is not reached by a leader for the predefined time (don’t matter whether it is on startup or
after it had a leader), it starts an election process. The election process is not described in detail here because it’s work
in progress. It will be described in detail later in other parts of documentation.

When verwalter elected as a leader:

1. It connects to every node and ensures that every follower knows the leader

2. After establishing connections, it gathers the configuration of all currently running processes on every node

3. It connects to local cantal and requests statistics for all the nodes

4. Then it runs scheduling algorithm that produces new configuration for every node

5. At next step it delivers configuration to respective nodes

6. Repeat from step 3 at regular intervals (~10 sec)

In fact, steps 1-3 are done simultaneously. As outlined in cantal documentation it gathers and aggregates metrics by
itself, easing the work for verwalter.

Note that at the moment when a new leader is elected the previous one is probably not accessible (or there were two of
them, so no shared consistent configuration exists). So it is important to gather all current node configurations to keep

6 Chapter 1. About

http://cantal.readthedocs.org/en/latest/concepts.html#aggregated-metrics

Verwalter Documentation, Release 0.13.4

number of reallocations/movements of processes between machines at a minimum. It also allows to have persistent
processes (i.e. processes that store data on the local filesystem or in local memory, for example, database shards).

Having not only old configuration but also statistics is crucial, we can use it for the following things:

1. Detect failing processes

2. Find out the number of requests that are processed per second

3. Predict trends, i.e. whether traffic is going up or down

All this info is gathered continuously and asynchronously. Nodes come and leave at every occasion, so it is too
complex to reason about them in a reactive manner. So from SysOp’s point of view the scheduler is a pure function
from a {set of currently running processes; set of metrics} to the new configuration. The verwalter itself does all heavy
lifting of keeping all nodes in contact, synchronizing changes, etc.

The input to the function in simplified human-readable form looks like the following:

box1 django: 3 running, 10 requests per second and growing; 80% CPU usage
box2 flask: 1 running, 7 RPS and declining; django: 2 starting; 20 %CPU

In lua code function looks like this (simplified):

function scheduler (processes, metrics)
...
return config

end

Furthermore, we have helper utilities to actually keep matching processes running. So in many simple cases scheduler
may just return the number of processes it wants to run or keep running. In simplified form it looks like this:

function schedule_simple(metrics)
cfg = {

django_workers = metrics.django.rps / DJANGO_WORKER_CAPACITY,
flask_workers = metrics.flask.rps / FLASK_WORKER_CAPACITY,

}
total = cfg.django_workers + cfg.flask_workers
if total > MAX_WORKERS then

-- not enough capacity, but do our best
cfg = distribute_fairly(cfg)

else
-- have some spare capacity for background tasks
cfg.background_workers = MAX_WORKERS - total

end
return cfg

end

make_scheduler(schedule_simple, {
worker_grow_rate: '5 processes per second', -- start processes quickly
worker_decline_rate: '1 process per second', -- but stop at slower rate

})

Of course the example is oversimplified, it is only here to get some spirit of what scheduling might look like.

By using proper lua sandbox, we ensure that function is pure (have no side effects), so if you need some external
data, it must be provided to cantal or verwalter by implementing their API. In lua script, we do our best to ensure that
function is idempotent, so we can log all the data and resulting configuration for post mortem debugging.

Also this allows us to make “shadow” schedulers. I. e. ones that have no real scheduling abilities, but are run on every
occasion. The feature might be useful to evaluate new scheduling algorithm before putting one in production.

1.1. Concepts 7

Verwalter Documentation, Release 0.13.4

Follower’s Job

The follower is much simpler. When leadership is established, it receives configuration updates from the leader.
Configuration may consist of:

1. Application name and number of processes to run

2. Host name to IP address mapping to provide for an application

3. Arbitrary key-value pairs that are needed for configuring application

4. (Parts of) configurations of other nodes

Note the items (1), (4) and partially (3) do provide the limited form of service discovery that was declared at start of
this guide. The (2) is there mostly for legacy applications which does not support service discovery. The (4) is mostly
for proxy servers that need a list of backends, instead of having backends discover them by host name.

Note: We use extremely ignorant description of “legacy” here. Because even in 2015 most services don’t support
service discovery out of the box and most proxies have a list of backends in the config. I mean not just old services
that are still widely used. But also services that are created in recent years. Which is problem on it’s own but not the
one verwalter is aimed to solve. It’s just designed to work both with good and old-style services.

Every configuration update is applied by verwalter locally. In the simplest form it means:

1. Render textual templates into temporary file(s)

2. Run configuration checker for application

3. Atomically move configuration file or directory to the right place

4. Signal the application to reload configuration

For some applications it might be more complex. For lithos which is the most common configuration target for
verwalter it’s just a matter of writing YAML/JSON config to temporary location and calling lithos_switch utility.

Note: We’re still evaluating whether it’s good idea to support plugins for complicated configuration scenarios. Or
whether the files are universal transport and you just want to implement daemon on it’s own if you want some out of
scope stuff. The common case might be making API calls instead of reloading configuration like you might need for
docker or any cloud provider. Lua scripting at this stage is also an option being considered.

1.1.3 Cross Data Center

Fig. 4: The cross data center connection scheme

When crossing
data center things
start to be more
complicated. In
particular verwal-
ter assumes:

1. Links between data centers are order of magnitude slower than inside (normal RTT between nodes inside data-
center is 1ms; whereas between DC even on the same continent 40ms is expected value and sometimes may be
up to 120-500 ms). In some cases traffic is expensive.

2. The connection between datacenters is less reliable and when it’s down clients might be serviced by single data
center too. It should be possible to configure partial degradation.

3. Each DC has some spare capacity on it’s own. So moving resources between data centers might be more gradual.

8 Chapter 1. About

Verwalter Documentation, Release 0.13.4

4. There are few data centers (i.e. it’s normal to have 100-1000 nodes, but almost nobody has more than a dozen
of DCs).

So verwalter establishes a leader inside every datacenter. On the cross-data-center boundary all verwalter leaders
treated equally. They form full mesh of connections. And when one of them experiences peak load it just requests
some resources from other.

Let’s repeat that again: because verwalter is not a database, consistency is not important here. I.e. if some resources
are provided by DC1 for DC2 and for some reason latter lost connectivity or has some other reason to not use requested
resources, we just release them on a timeout by looking at appropriate metrics. So dialog between data center leaders
translated to the human language may look like the following:

All things here are scriptable. So your logic may only move background tasks across data-centers or use cloud API’s
to request more virtual machines

Note: A quick note to last sentence. You can’t access cloud API directly because of sandboxing. But you may
produce a configuration for some imaginary cloud provider management daemon that includes bigger value in the
setting number of virtual machines to provision.

1.2 Glossary

configuration The initial input to the verwalter’s scheduler. It conists of:

• All data in /etc/verwalter/runtime/*

• All templates and actions in /etc/verwalter/templates/*

It’s expected that these files are never mutated. But new ones might be added. E.g. if there is runtime/
v1.0.1/.. and new version runtime/v1.0.2 appears verwalter reads it as fast as possible, and makes it
available on next scheduler run.

All configuration versions are read by verwalter. So you can write any required logic in scheduler. For example,
to arrange a blue/green deployment strategy you may need to keep “blue” configuration around even when no
processes running it are present.

schedule A data structure that holds information about all the services that must run on the whole cluster. This is the
result of running a scheduler code.

In fact it’s just a piece of JSON-like data, which you may use in templates when rendering the configu-
rations. It may contain anything, but usually it’s something along lines of nested dicts: host-name ->
process-name -> number-of-instances.

scheduler The Lua code that receives a configuration and a state and generates a schedule. Basically it’s just a (pure)
function.

A scheduler may do whatever it needs for the transformation. But, but it’s very important to obey the following
rules:

1. No external data should be used. Just configuration and state.

2. No side effects allowed, like writing to the files or even reading current date/time (we provide date/time as
part of state, though)

3. It shouldn’t be too slow

1.2. Glossary 9

Verwalter Documentation, Release 0.13.4

deployment id The unique identifier of the series of the actions that was run to apply certain config. Deployment id
is local for single machine, but may span across roles. Single deployment id is used only once, so they refer to
the time range when deployment started and finished. Multiple deployments can’t be run on single machines
simultaneously.

Not all roles can be deployed with the single deployment id just the ones which need an update. Each role may
execute commands only once during single deployment.

There is no direct correspondence between config hash and deployment id. Single config may be deployed
multiple times even on single machine. (each time when verwalter is restarted, each time when config changed
and then rolled back again). But single deployment may deploy only single configuration. I.e. configuration
can’t change during deployment.

And there is no direct match between application update and deployment id. The (rolling) application id usually
involves multiple configuration updates. And each configuration update triggers one deployment on each ma-
chine. Also multiple rolling updates of different applications may take place at the same time. And all of them
correspond to a single configuration change at any point in time.

role A single deployment unit. A role has it’s own configuration independent of others(set of versions of containers,
set of config templates).

A role may contain multiple containers. And multiple different setups on different nodes. It’s up to a lua
configuration.

Usually single role refers to single “sandbox” in lithos, but this limit is not enforced.

Similarly blue/green deploy (or rolling update) between versions is usually performed for a role. Which means
each role has it’s own state of the deployment, and multiple roles can be migrated independently. But this is
not enforced either. With careful scripting you can do both: synchronize updates of multiple roles or update
different processes in single role using some independent states.

10 Chapter 1. About

http://github.com/tailhook/lithos

CHAPTER 2

Running

Contents:

2.1 Exit Codes

2.1.1 Verwalter Daemon

• 3 – initial configuration read failed

• 4 – failed to load scheduler’s lua code

• 5 – failed to add inotify watch

• 81 – internal bug: tcp listener exited

• 82 – internal bug: fetch channel is dead

• 83 – internal bug: responder thread is dead

• 91 – killed by watchdog of scheduler, which means:

– scheduler has not finished it’s work within one second

– scheduler lua scripts could not be initialized within ten seconds

– “runtime” metadata could not be loaded within 2 seconds

– inotify continuously reports changes during 10 seconds

• 92 – scheduler thread have panicked (probaby a bug)

• 93 – killed by watchdog of the render/apply code. This probably means either your templates are a way too
slow, or commands that are used to apply config are doing too much work. We currently have a fixed timeout of
180 seconds (3 min) for all of the stuff there (normally it’s done in a fraction of second)

• 94 – the thread that applies config have panicked (probably a bug)

• 95 – no leader was elected for last 5 min

11

Verwalter Documentation, Release 0.13.4

2.1.2 Verwalter Render

This may be visible in verwalter’s deployment log:

• 2 – argparse error, should not happen, but may be if version of verwalter-render (on disk) doesn’t match verwal-
ter daemon running

• 3 – error validating arguments, should be treated same as 2

• 4 – no template key found in metadata, this means scheduler returned incomplete data for this role

• 5 – verwalter daemon is running different version from verwalter-render. This probably means you should
restart verwalter daemon. For other things it should be treated same as 2

• 10 – error when reading or rendering templates

• 20 – error appling templates (executing commands)

• 81 – error when doing logging, this probably means that some errors are absent in logs

The error codes marked with mean that no actual rendering process is started. I.e. system is consistent (old) state.
With other codes we can’t easily say whether configuration was appllied partial, comprehensively or not at all.

2.2 Configuration Directory Layout

The layout of /etc/verwalter directory.

The directory layout is still in flux. Here are somewhat current draft.

• scheduler – scheduler code in lua

– scheduler/SCHEDULER_VERSION/main.lua – the entry point of the scheduler (scheduler
function)1

– scheduler/SCHEDULER_VERSION/**/*.lua – other files that are require’d from scheduler

• templates – the templates to render configuration locally

– templates/ROLE/TMPL_VERSION – templates for role and version1

* **/*.hbs – bare configuration templates

* **/*.vw.yaml – instructions on how to apply the template

• runtime – the runtime metadata, mostly list of processes to run and other data needed for scheduling. Basically
all of this is passed to the scheduler

– runtime/ROLE/ROLE_VERSION – metadata dir for role and version

* NAME.yaml – adds some metadata under key NAME

* NAME.json – just another format of the same thing

• machine – the current machine metadata

– NAME.yaml, NAME.json – adds some metadata under key NAME

• frontend – the files to render the frontend2

1 The version of scheduler and version of templates is not the same as version of role (i.e. an application). It’s expected that scheduler and
templates change very rarely and only by admins, not by release managers. Also you might use “shadow” scheduler and “shadow” template
renderer for debugging.

2 Each installation have different needs. So verwalter doesn’t have a frontend that is packaged with verwalter. We only provide the API, and a
default (or example) frontend which you might use as a starting point. Sure verwalter serves static files so you don’t need to install a separate web
server.

12 Chapter 2. Running

Verwalter Documentation, Release 0.13.4

– common/* – common files for the whole cluster (e.g. libraries)

– ROLE/* – role-specific things3

• sandbox – this contains some security configs:

– Logs that can be served within verwalter

– (TODO) commands to run from verwalter-render, run-as user, etc.

Note: We avoid the term “application” here because it’s inherently vague. The role is just unit that may be deployed
independendly (so it’s also versioned independently). The role may consists multiple applications or application may
be built on top of multiple roles, dependening on use case and how you define the application.

2.2.1 Deployment

It’s assumed that scheduler and templates are written by SysOps. They should be versioned in version control
system and deployed as needed.

The frontend is very similar. It should be versioned too. It’s only mentioned separately because usually changed
by some frontender or release engineer or whatever.

The runtime folder is assumed to be deployed by buildbot. I.e. when build is done, buildbot does two things to
prepare deployment:

1. Upload built image to all servers that will be able to run the application

2. Put app metadata in the runtime folder on same machines

Then it’s up to the scheduler if it deploys the version automatically or waits for operator to trigger the update action.

3 We don’t have frontend files versioned yet. It’s not critical part of the system and it assumed that an (updated) frontend should support at least
few versions of the application (role).

2.2. Configuration Directory Layout 13

Verwalter Documentation, Release 0.13.4

14 Chapter 2. Running

CHAPTER 3

Writing Scheduler

Contents:

3.1 Scheduler API

3.1.1 Overview

Warning: API is still unstable and is subject to change

Scheduler is a lua script. All the API are exposed through functions on the main module.

3.1.2 Callbacks

Functions that verwalter calls on its own.

Note: You can use coroutines inside the code, but you can’t yield to rust code. I.e. the code is always synchronous
and must return the value on each call. However, you can store some custom state in the schedule itself.

schedule(named_arguments)

Arguments

• peers – List of peers and pings to them as reported by cantal

• runtime – Metadata stored in /etc/verwalter/runtime

• parents – List of parent schedules (the ones that are active now). Usually there is only
one. But when we join cluster just after split-brain there can be more than one parent sched-
ule

15

https://www.lua.org/

Verwalter Documentation, Release 0.13.4

• metrics – Metrics as returned by cantal

Return value of the scheduler is a JSON object with the following keys:

vars Mapping (json object) that contains arbitrary variables which will be passed to the renderer. They might
be overriden by role and node-specific variables. See below.

Example:

{"vars": {
"cluster_name": "dev"}}

roles Mapping of role to vars of this role. This contains variables common for specific role on all nodes. All
roles specified here will be rendered on all machines (can spawn 0 instances, though).

Example:

{"roles": {
"django": {

"version": "v0.1.3",
"listen-ports": "8080"}}

nodes Mapping of node name (short/unqualified hostname) to node metadata. Each node contains: vars and
roles.

Example:

{"nodes": {
"alpha": {

"vars": {"nearest_cache_addr": "slave7.redis.local"},
"roles": {

"django": {
"instances": 1,
"version": "v0.1.3"}}}}}

More information on how variables are composed for the renderer is in Rendering docs.

query_metries A query for metrics. It’s sent directly to cantal. Refer to cantal’s documentation to find out the
structure of the metrics.

3.2 Rendering

In verwalter “rendering” is a process of applying schedule to configure specific application. It may consist of:

1. Substituting variables in textual templates

2. Running shell commands

3. Sending signals to other processes or different kind of IPC

4. Possible, but discouraged: calling HTTP APIs

Rendering for every role is deemed to be indepenedent of other roles. We also encourage, but cannot enforce the
following properties:

1. Atomic render of role (i.e. either it applied entirely, or not at all)

2. Full configuration check before switching

16 Chapter 3. Writing Scheduler

Verwalter Documentation, Release 0.13.4

3.2.1 Input

Input to the rendering process is a mapping of variables to values. For each role we merge the following items from
schedule:

• vars

• roles[role_name]

• nodes[node_name]["vars"]

• nodes[node_name]["roles"][role_name]

Where latter variables override former ones.

Nested mappings are merged up to two level’s deep. I.e. if vars["common"] is a mapping each key of it will
be updated by roles[x]["vars"]["common"] independently, but vars["common"]["info"] would be
replaced as a single atomic unit, regardless of whether it is an object or a string.

3.2. Rendering 17

Verwalter Documentation, Release 0.13.4

18 Chapter 3. Writing Scheduler

CHAPTER 4

Writing Renderers

Renderer is a subsystem that executes all necessary steps to apply verwalter schedule/configuration on each machine

Contents:

4.1 Render Commands

4.1.1 Condition

Condition is a special command that executes other commands only if some condition happens.

Example:

Conditions:

dirs-changed Calculates hash of all files in the directory recursively at the beginning of the processing this
.render.yaml file. Then the hashsum is checked again when !Condition is encountered and if hashsum
changed commands are executed, otherwise they are silently skipped.

Options:

commands List of commands to execute when condition is true. All the same commands suported except the !
Condition itself.

4.1.2 CleanFiles

Cleans files by pattern, keeping only ones listed.

Example:

Options:

pattern Filename pattern to check. This supports basic glob syntax plus any part of path can be captured like in
regular expression. This means that only parenthised part is matched against keep list, and only files that match
glob are removed.

19

Verwalter Documentation, Release 0.13.4

Few pattern examples:

• /dir/(*).conf deletes *.conf files, keep-list contains file names without extension

• /dir/(*.conf), same but keep-list contains filenames with extension

• /dir/(**/*.conf), deletes *.conf recursively, where keep list contains relative path (without ./)

keep-list Filename of the file which lists names which should be kept. Each line represents single name. The
contents of each line matched against thing captured in pattern (see above). No comments or escaping is
supported, empty lines are ignored.

20 Chapter 4. Writing Renderers

CHAPTER 5

Tutorial Deployment

Warning: This is a work in progress tutorial for work in progress tools. It’s not ready for use yet.

5.1 Brief

This tutorial will guide you though deploying simple django application using vagga, lithos, cantal and verwalter.

5.1.1 Tools

We are trying to assume as little as possible about the reader knowledge, but basic understanding of unix is definitely
required. Here is the description of tools that most readers would be intoduced here to:

vagga A tool for setting up development environments. For this tutorial, we will use it for building container images.
Similar tools: vagrant, docker-compose, otto, packer (in some sense).

lithos A container supervisor. This one starts containers in production environment. Unlike docker it doesn’t have
tools for building and fetching container images we will use vagga and rsync for that tasks. Similar tools:
docker, rocket, systemd-nspawn.

cantal A monitoring system, or a system collecting statistics. It’s main distinction is that it is decentralized. It stores
data in memory, and keeps only recent data. This makes it fast and highly-available. And this in turn allows to
make orchestration decisions based on the metrics. Another feature is that it has built-in peer discovery. Similar
tools: collectd, prometheus, graphite.

verwalter A orchestration system. It’s highly scriptable and decentralized. Meaning you can do orchestration tasks
in split-brain scenario and it depends on you what specific things system can actually do. The tool also includes
text templates for rendering configuration for any external system that is included in the cluster. Similar tools:
mesos, kubernetes.

Any tool can potentially replaced by some other tool. Currently, the only hard dependency is that you need cantal to
run verwalter.

21

https://www.djangoproject.com/
http://github.com/tailhook/vagga
http://github.com/tailhook/lithos
http://github.com/tailhook/cantal
http://verwalter.readthedocs.org/
https://www.vagrantup.com/
https://docs.docker.com/compose/
https://www.ottoproject.io/
https://www.packer.io/intro/
https://www.docker.com/
http://github.com/tailhook/vagga
https://rsync.samba.org/
https://www.docker.com/
https://github.com/coreos/rkt
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://collectd.org/
https://prometheus.io/
http://graphite.wikidot.com/
http://mesos.apache.org/
http://kubernetes.io/

Verwalter Documentation, Release 0.13.4

Anyway this combination provides good robustness, security and ease of use. See Concepts for more details about
how these tools rely on each other to provide mentioned features.

5.2 Container

Usually you start with a vagga container that works locally. There is a tutorial for building a container for django
application. We will skip this part and assume you have a working container. Please, don’t skip this part even if you
have development environment already set up (but not containerized). It is important for the following reasons:

1. You need to know all dependencies and their versions, in may happen that you don’t know exact list of system
dependencies if you are using virtualenv for example.

2. Vagga makes everything readonly by default, so as lithos. This serves as additional check of which filesystem
paths are writable by the application (hopefully you don’t have any).

3. We’ll need the container for the next steps. We will base our deployment container on the development one (see
below)

It’s also good idea to make add a check of whether your application needs a writable /tmp. Just add a volume to your
vagga container config:

containers:
django:
...
volumes:

/tmp: !Empty

This makes /tmp read-only. So you can see errors when application tries to write there and either fix the application
(preferred in my opinion) or provide valid /tmp mount in lithos configs later on.

5.3 Preparing Machines

As described in concepts, you need to install lithos, cantal and verwalter on all three machines.

(TBD: we skip exact installation instructions for now, because we don’t have repositories online yet).

5.3.1 Global Things

Verwalter (and cantal too) requires /etc/machine-id. If your system is running by systemd then you already have
this file. Otherwise, you can either use systemd-machine-id-setup from systemd utilities, or just run simpler
script like uuidgen | sed s/-//g > /etc/machine-id. You must run the script once on every machine
and file must never change. Don’t put the file in the virtual machine image such as AMI. System will malfunction
if several machines have same machine-id.

5.3.2 Lithos Configuration

Here is a checklist:

1. /etc/lithos/master.yaml (doc) – might be empty but can be present

2. /etc/lithos/sandboxes/APP_NAME.yaml (doc) – must be present for each application, you want to
deploy on the machine

22 Chapter 5. Tutorial Deployment

http://vagga.readthedocs.org/en/latest/examples/tutorials/django.html
http://github.com/tailhook/vagga
http://github.com/tailhook/lithos
http://github.com/tailhook/lithos
http://github.com/tailhook/cantal
http://verwalter.readthedocs.org/
https://freedesktop.org/wiki/Software/systemd/
http://lithos.readthedocs.org/en/latest/master_config.html
http://lithos.readthedocs.org/en/latest/sandbox_config.html

Verwalter Documentation, Release 0.13.4

3. /etc/init/lithos.yaml or /usr/lib/systemd/system/lithos.service should start
lithos_tree daemon

These configs are not generated by verwalter for security reasons. For example, sandbox config limits the directories
on a host system that application is able to read or write. We don’t want any application that can reach verwalter’s
HTTP API to be able to change such fundamental constraints.

On the other hand, the reasons above doesn’t tell you can’t automate deploying these files. You can easily use ansible
to upload them or put them into virtual machine image, such as AMI.

5.3.3 Cantal Configuration

5.3. Preparing Machines 23

http://ansible.com/

Verwalter Documentation, Release 0.13.4

24 Chapter 5. Tutorial Deployment

CHAPTER 6

Verwalter Changes by Version

6.1 Verwalter 0.13.4

• Feature: log of invoked actions added with logger verwalter::frontend::api::actions

6.2 Verwalter 0.13.3

• bugfix: fix displaying actions on leader using default frontend

6.3 Verwalter 0.13.2

• bugfix: Fix link to alternate frontend in default frontend

• feature: add id field to graphql status

• bugfix: fix server list display in api frontend

6.4 Verwalter 0.13.1

• feature: add /v1/graphql endpoint with GraphQL API

• feature: add /v1/graphiql for poking with GraphQL API

• feature: default frontend now shows peers having errors

• feature: default frontend now shows full list of failing roles with the links to logs under the navigation bar

25

Verwalter Documentation, Release 0.13.4

6.5 Verwalter 0.13.0

• breaking: all requests to /action and /wait_action now require Content-Type: application/
json

• feature: add support for query.wasm which might be used for overriding rendered roles and for custom
queries

• feature: you can fetch current scheduler (and query) via API /v1/wasm/scheduler.wasm (only wasm
scheduler though)

6.6 Verwalter 0.12.1

• Feature: add “node” variable to templates by default (in compatibility mode)

6.7 Verwalter 0.12.0

• We’re preparing for list of roles and their variables be prepared by the wasm code in scheduler. This release only
changes internals, preparing for that (we bump version to make a signal that things should be tested carefully).

6.8 Verwalter 0.11.3

• Feature: Added exerimental route /v1/leader-redirect-by-node-name/ that returns redirect to a
leader node

• Feature: Add a link to default frontend “common” frontend

• Bugfix: UI for ‘Choice’ variable type now works in api frontend

6.9 Verwalter 0.11.2

• bugfix: reset failures for the roles have been removed

• Feature: Add CleanFiles command

6.10 Verwalter 0.11.1

• feature: add Condition action which allows to execute an action if some files have been changed during
executing other commands

6.11 Verwalter 0.11.0

• breaking: wasm scheduler requires returning object instead of tuple

• feature: new SplitText action, to deal with multiple generated files easily

• bugfix: wasm module will be reinitialized after panic

26 Chapter 6. Verwalter Changes by Version

Verwalter Documentation, Release 0.13.4

• bugfix: since verwalter 0.1.4 verwalter couldn’t work as a single node

• breaking: serves /files/ directory from static files

6.12 Verwalter 0.10.4

• feature: add an experimental --allow-minority-cluster option that allows verwalter to elect itself as
a leader even if it sees less then N/2+1 nodes. I.e. in split-brain scenario two leaders might exist simultaneously
which will then be merged. Note: this is a task of a specific scheduler to merge schedules appropriately.

• bugfix: additional css,js,fonts for alternative frontends were not served properly

• feature: allow to --default-frontend via CLI

6.13 Verwalter 0.10.3

• bugfix: timestamps in peer info now serialize as milliseconds since epoch

• wasm: add function to log panics

• wasm: add log/pow/exp functions needed for rust (actually llvm) build

6.14 Verwalter 0.10.2

• feature: upgrading trimmer to 0.3.6 allows to use escaping, dict and list literals in (.trm) templates

• Using wasmi instead of parity-wasm for interpreting wasm

• Initial routing for alternative frontends (/~frontend-name/... urls)

6.15 Verwalter 0.10.1

• Timeout for incoming requests changed 10sec -> 2 min (mostly important to download larger logs)

• Template variables are passed to renderer using temporary file rather than command-line (working around limi-
tations of sudo command line)

6.16 Verwalter 0.10.0

• Experimental webassembly scheduler support

6.17 Verwalter 0.9.14

• UI: fix chunk size in log tailer, mistakenly committed debugging version

• scheduler: if scheduler continue to fail for 5 min verwalter restarts on this node (this effectively elects a new
leader)

6.12. Verwalter 0.10.4 27

Verwalter Documentation, Release 0.13.4

6.18 Verwalter 0.9.13

• UI: add “Skip to End” button on log tail, skip by default on pressing “follow”

6.19 Verwalter 0.9.12

• Bugfix: fix crash on serving empty log

• Bugfix: JS error on the last step of api-frontend pipeline

• Log viewer leads to tail with correct offset

6.20 Verwalter 0.9.11

• Bugfix: Content-Range headers on logs were invalid

• Api-frontend: sorted server list

• Api-frontend: no “delete daemon” when update is active

6.21 Verwalter 0.9.10

• Add nicer log tailing UI and activate link in role log list

• Add some cantal metrics

• Bugfix: list of peers did not display correct timestamps

6.22 Verwalter 0.9.9

• Bugfix: external logs were not served properly

• Bugfix: when cantal fails for some time, verwalter could block

6.23 Verwalter 0.9.8

• Keeps few backups of old schedules

• Updates dependencies of frontend

6.24 Verwalter 0.9.7

• Bugfix: when request to cantal failed, verwalter would never reconnect

28 Chapter 6. Verwalter Changes by Version

Verwalter Documentation, Release 0.13.4

6.25 Verwalter 0.9.6

• Settings tweak: runtime load watchdog timeout is increased to 5 sec

• Bugfix: fix “rerender all roles” button (broken in 0.9.0)

6.26 Verwalter 0.9.5

• Bugfix: because we used unbuffered reading of runtime, it was too slow, effectively preventing scheduler to start
on larger schedules

• Settings tweak: scheduler watchdog timeout is increased to 5 sec

6.27 Verwalter 0.9.4

• Bugfix: follower was unable to render templates (only leader)

6.28 Verwalter 0.9.3

• Peer info (known since, last ping) is now visible again (broken in 0.9.0)

6.29 Verwalter 0.9.2

• Fix bug in showing old schedule at /api/v1/schedule api

• Logs now served by newer library, so bigger subset of requests supported (last modified, no range, . . .)

6.30 Verwalter 0.9.1

• Release packaging fixes and few dependencies upgraded

6.31 Verwalter 0.9.0

The mayor change in this version of scheduler that we migrated from rotor network stack to tokio network stack. This
is technically changes nothing from user point of view. But we also decided to drop/fix rarely used functions to make
release more quick:

1. Dropped /api/v1/scheduler API, most useful info is now in /api/v1/status API

2. Some keys in status are changed

3. No metrics support any more, we’ll reveal them in subsequent releases (we need more performant API in cantal
for that)

Yes, we still use /v1 and don’t guarantee backwards compatibility between 0.x releases. That would be a major pain.

6.25. Verwalter 0.9.6 29

Verwalter Documentation, Release 0.13.4

30 Chapter 6. Verwalter Changes by Version

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

31

Verwalter Documentation, Release 0.13.4

32 Chapter 7. Indices and tables

Index

C
configuration, 9

D
deployment id, 10

R
role, 10

S
schedule, 9
schedule() (built-in function), 15
scheduler, 9

33

	About
	Concepts
	Glossary

	Running
	Exit Codes
	Configuration Directory Layout

	Writing Scheduler
	Scheduler API
	Rendering

	Writing Renderers
	Render Commands

	Tutorial Deployment
	Brief
	Container
	Preparing Machines

	Verwalter Changes by Version
	Verwalter 0.13.4
	Verwalter 0.13.3
	Verwalter 0.13.2
	Verwalter 0.13.1
	Verwalter 0.13.0
	Verwalter 0.12.1
	Verwalter 0.12.0
	Verwalter 0.11.3
	Verwalter 0.11.2
	Verwalter 0.11.1
	Verwalter 0.11.0
	Verwalter 0.10.4
	Verwalter 0.10.3
	Verwalter 0.10.2
	Verwalter 0.10.1
	Verwalter 0.10.0
	Verwalter 0.9.14
	Verwalter 0.9.13
	Verwalter 0.9.12
	Verwalter 0.9.11
	Verwalter 0.9.10
	Verwalter 0.9.9
	Verwalter 0.9.8
	Verwalter 0.9.7
	Verwalter 0.9.6
	Verwalter 0.9.5
	Verwalter 0.9.4
	Verwalter 0.9.3
	Verwalter 0.9.2
	Verwalter 0.9.1
	Verwalter 0.9.0

	Indices and tables

